1. Binary Relations

There are four ways to look at a binary relation R € X X X. A set R, as a bipartite graph G, as a
directed graph D, as an incidence matrix M. For the examples we assume that X contains finite
amount of elements.
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The empty set @ is a relation and like many other sets, they are operated upon by

complement Rc¢, intersection N, and union U. Then there is the identity relation Dy, the

inverse relation R-1 and the composition operation o:
Dx={(x, x); x € X};

R=1={(y,x); (x,¥) ER};

R oR ={(x,2); (x,y) ERand (y,z) € R'for somey € X}

Here is a figure that shows the composition in terms of bipartite graphs.
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2. What is a poset?

A poset is short for partially ordered set which is a set whose elements are ordered but not all
pairs of elements are required to comparable in the order. The definition has two versions of it:
strict (<) and non-strict (<) partial order. The second version is used most of the time and we will
use it here. Though it is important to note what distinguishes both of them.

| Strict Partial Order Non-Strict Partial Order
(R-) for no x € X does (x, x) € S hold (R+) for all x € X we have (x, x) ER
(A-)if (x,y) €S, then (y,x) €S (A)if (x,y) ERand (y,x) ERthenx =y
(T)if (x,y) €Sand (y,z) €S, then (x,y) €S (T)if (x,y) ERand (y,z) €S, then (x,y) €S

(R-),(R+) = irreflexivity resp. reflexivity
(A-),(A) = antisymmetry resp. symmetry
(T) = transitivity

It is apparent that condition (R-) and (A) imply (A). This means we can replace (A-) with (A) in the
definition of strict partial order. Furthermore if we now take these conditions and in terms of
identity Dy, inverse R-1 and composition operation o then we can see:

(R)DxNR=0
(R+) DxS R
(A)RNR-1C Dy
(MTRoRCSR

Proposition 2.1 Let X be a set

a) If Sis a strict partial order on X, then S U Dxis a non-strict partial order on X
b) If Ris a non-strict partial order on X, then R\ Dxis a strict partial order on X

¢) These two are mutually inverse.



3. Preorders

When we weaken the definition of a partial order and take out one of its condition, then we get
Preorders. Preorders are only reflexive and transitive. They are also called partial preorder or
pseudo-order. In preorders its permitted that distinct elements x and y satisfy (x, y) € R and (y,
x) ER.

Proposition 3.1

Let R be a partial preorder on X. Define a relation ~ on X by the rule that x ~ y if and only if (x, y),
(y, x) € R. Then ~ is a equivalence relation on X. Moreover, if x ~ x"and y ~ y’, then (x, y) ER if
and only if (x ’, y') € R. Thus, R induces in a natural way a relation R on the set X of equivalence
classes of X; and R is a non-strict partial order on X.

4. Properties of posets

An element of a poset (X, R) is called maximal if there is no element y € X satisfying x <z y. At the
same time, x is minimal if no elements satisfy y <z x. In general, there may be no maximal
element or there may be more than one in a poset. However in a finite poset, there can at last be
one maximal element which can be found as follows: we simply chose one element that is not the
maximal and then replace it by an element ywhich satisfies x <gzy. We repeat this until we find
the maximal element. It is important to end the process due to the irreflexivity and transitivity rule
which tells that any element cannot be revisited. Simultaneously, a finite poset must contain
minimal elements too.

A chain in a poset (X, R) is a subset C of X which is totally ordered by the restriction of R that is, a
totally ordered subset of X. An antichain is a set A of pairwise incomparable elements.

There are infinite posets (like Z) and they do not have to contain maximal elements. Zorn’s Lemma
gives a sufficient condition for maximal elements to exist:

Let (X, R) be a poset in which every chain has an upper bound. Then X contains a maximal
element.

It’s important to keep the two terms in mind as the height h(X) of the poset is determined by the
largest cardinality of a chain and its width w(X) from the largest cardinality of an antichain.



Theorem 4.1
Let (X, R) be a finite poset. Then let X break into w(X) chains.

Up-set in a poset (X, R) is a subset of Y of X such that, if y € Y and y <z z, then z € Y. The set of
minimal elements in an up-set is an antichain.

Down-sets are defined dually. The compliment of an up-set is a down —set and there are equal
amounts of them.

5. Hasse diagrams.

Proposition 5.1

Let (X, R) be a locally finite poset and x, y € X. Then x <gy iff there exists elements zy,..., z, (for

some non-negative integer n) such that zo= x, z,=y and z;y1 covers z;fori =0, ...., n — 1.
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6. Lattices

A lattice is a poset (X, R) with two properties:
e X has an upper bound 1 and a lower bound 0;
e forany two elements x,y € X, there is a least upper bound and a greatest lower
bound of a set {x, y}.

In a lattice, we denote the least upper bound of {x, y} by x V y and the greatest lower bound
by xAy. The lattice is commonly regarded as a set with two distinguished elements and two
binary operations rather than a special kind of poset.

Lattices are expressed in axioms in terms of two constants 0 and 1 and the two operations A
and V. The following axioms in the next page are not all independent. In finite lattices we
don’t need to specify 0 and 1 separately since 0 is just the meet of all elements in the lattice
and 1 is their join.



Proposition 6.1

Let X be a set, A and V two binary operations defined on X, and 0 and 1 two elements of X.
Then (X,AV,0,1) is a lattice iff the following axioms are satisfied:

e Associativity: x A(yAz) = (xAy)AzandxV (yVz) =(xVy)Vz
e Commutativity: x Ay =yAxandxVy=yVx;

e Idempotentlaws: x Ax = xV x = x;

e xAN(xVy)=x=xV(xXAY);

e xAN0=0,xvl1=1.

A sublattice of a lattice is a subset of elements containing 0 and 1 and closed under the
operations A and V. It’s a lattice in its own right. The examples shown below are of lattices.

Examples:
e The subset of a (fixed) set:
AANB=ANB
AVB=AUB

e The subspaces of a vector space:
UANV=UUV
UVvV =span(UUV)

e The partisal pseudo-orders on a set:

RAT=RNT
RvT=RUT

7. Distributive and modular lattices

A lattice is distributive if it satisfies the distributive laws (D) and it is modular is it satisfies the
modular law (M).

D)yxA(yVvz)=Ay)(xAz)andxV (yAz) = (xVy)(xVz)forall x,y, z.
M)xV(yAz)=(xVy)Azforallx,y,zsuchthatx < z.

Theorem 7.1
A lattice is modular iff it does not contain the lattice N5 as a sublattice. A lattice is distributive

iff it contains neither the lattice N5 nor the lattice N3 as a sublattice. In the same way as in
Proposition 6.1, we are able to describe distributive axioms axiomatically.
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Figure 7: Two |lattices
Proposition 7.2

Let X be a set, A and V two binary operations defined in X, and 0 and 1 two elements of X.
Then (X,AV,0,1) is distributive lattice iff the condition (D) and the following axioms are
satisfied:

e Idempotent law: x A x = x;

e xAl=1vx=1;

e xAN0=0vx=0

Theorem 7.3

(a) Let (X, R) be a finite poset. Then the set of down-sets in X, with the operations N and U
and distinguished elements 0 = @ and 1 = X, is a distributive lattice.

(b) Let L be a finite distributive lattice. Then the set X of non-zero join-irreducible elemets of
L is a sub-poset of L. A non-zero element x € L is called join-irreducible if, whenever x = y v

z,wehavex =yorx =z.

(c) These two operations are mutually inverse. =



